

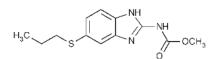
Heterocyclic Letters Vol. 6| No.2|181-184|Feb-April| 2016 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI <u>http://heteroletters.org</u>

AN ECO-FRIENDLY SYNTHESIS OF N-ALKYL-2-AMINO BENZIMIDAZOLE

Sadhu Srinivas Rao

Department of Chemistry, Vidya Jyothi Institute of Technology (Autonomous) Himayatnagar (Vill.), C.B.Post, Hyderabad, India – 500 075. E-mail: <u>seenu604(@gmail.com</u>

ABSTRACT


A green approach for the synthesis of N-alkyl-2-aminobenzimidazoles **2** ($R^1 = CH_3$, C_2H_5 , CH_2Ph) under, different conditions has been developed from 2-aminobenzimidazole **1** by reaction with an alkylating agent by physical grinding or by using green solvent like PEG-600 or by using micro-wave irradiation technique.

KEYWORDS Green synthesis, benzimidazole, grinding, microwave, 2-amino benzimidazole.

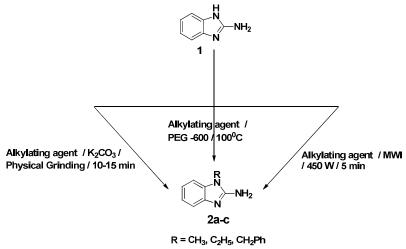
INTRODUCTION

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest^I. Benzimidazoles are an important class of bioactive molecules in the field of drugs and pharmaceuticals^{II}. 2-Mercaptobenzimidazole derivatives having substitution at either the nitrogen or sulfur are reported to exhibit a broad spectrum of biological activity.

Moreover, 2-amino benzimidazoles^{VIII-IX} occurs in broad spectrum of drugs and pharmacological agents with anticancer, antiviral, analgesic and antidiabetic properties. For example, mebendazole represents a big group of antiparasitic drugs and astemizole represents an antihistaminic group II generation drug with selective activity toward H1 receptors.

MEBENDAZOLE

RESULTS AND DISCUSSION


Condensation of o-phenylene diamine with urea by dry fusion of reactants at 130^{0} C gives the known benzimidazole-2-one, which on treatment with POCl₃ in the presence of catalytic amount of phenol, yields the previously reported^X 2-chloro benzimidazole. The latter on alkylation with alkylating agent such as dimethyl sulphate in the presence of K₂CO₃ in

CH₃CN medium using tetra-n-butylammonium bromide (TBAB) as phase transfer catalyst at RT for 3hr gave the previously reported^X N-methyl-2-chlorobenzimidazole.

Reaction of 1, independently, with each of dimethyl sulphate (DMS), diethyl sulphate (DES) and benzyl chloride (PhCH₂Cl) in the presence of K_2CO_3 , by a simple physical grinding of the reaction mixture in a mortar with a pestle under solvent-free conditions for 10-15 min at RT, followed by processing, gave respectively N-methyl-2-aminobenzimidazole **2a** (*i.e.*, **2**, R=CH₃), N-ethyl-2-aminobenzimidazole **2b** (*i.e.*, **2**, R=CH₂CH₃) and N-benzyl-2-aminobenzimidazole **2c** (*i.e.*, **2**, R=PhCH₂), as the products identical with the ones reported in the earlier methods^{XI} in all respects (m.p. m.m.p. and co-tlc analysis).

The reaction was also carried out in PEG-600 as the green solvent. Thus, heating a mixture of **1** with an alkylating agent in PEG-600 for 3h without the use of any added base, followed by simple processing, gave respectively 2a (*i.e.*, 2, R=CH₃), 2b (*i.e.*, 2, R=CH₂CH₃) and 5c (*i.e.*, 5, R= CH₂Ph) identical with the same products obtained above (Scheme I).

Compound 2 could also be prepared by an alternative, green method. Thus, 1 with an alkylating agent and K_2CO_3 as a base under microwave irradiation at RT conditions for 2 min and subsequent processing, gave respectively 2a (*i.e.*, 2, R= CH₃), 2b (*i.e.*, 2, R= CH₂CH₃), 2c (*i.e.*, 2, R= CH₂Ph) identical with the products obtained above (Scheme I).

Scheme-1 Synthesis of N-alkyl-2-aminobenzimidazole

EXPERIMENTAL

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. IR Spectra were recorded with Jasca FT-IR 5300. ¹H NMR and spectra were recorded in CDCl₃ / DMSO using Varian 400-MHz instrument. Mass spectra were recorded on an Agilent LC-MS instrument giving only M^+ values in Q+1 mode. Thin-layer chromatography (TLC) analyses were carried out on glass plates coated with silica gel GF-254 and visualization was achieved using iodine vapours or UV lamp. Experiments under microwave irradiation were carried out by using the commercially available CEM Discover Microwave Reactor.

Preparation of 2 from 1:

(i) Physical grinding method

A mixture of 1 (10 mM), alkylating agent (10 mM) and K_2CO_3 (1.38g, 10mM) was ground together for about 10-15 min in a mortar with a pestle at RT to obtain a homogeneous mixture. The completion of the reaction was monitored by TLC on silica gel-G plates using authentic samples of the starting material and the target compounds as references. The mixture was then treated with ice-cold water (\approx 30-40 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried to obtain crude 2**a-c**. Recrystallization of the crude product from ethyl acetate gave pure 2**a-c**. IR, ¹H NMR and LC-MS spectra for the compounds 2**a-c** were found to be in agreement with the structures assigned to them. Yields are shown in Table I.

(ii) In PEG-600

A mixture of 1 (10 mM), alkylating agent (10 mM) and PEG-600 (20 mL) was heated on a steam-bath at 100°C for 3hr. At the end of this period, the mixture was cooled to RT and poured into ice-cold water (\approx 50 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **2a-c**, identical with the same products obtained above. Yields are shown in **Table I.**

(iii) Under Microwave condition

A mixture of 1 (10 mM) and alkylating agent (10 mM) was taken in a 10 mL CEMreaction tube sealed by rubber stopper and subjected to microwave irradiation for 2 min in a commercial micro-wave reactor. After that, the tube was cooled and the completion of reaction was checked by TLC. Then the reaction mixture was poured into ice-cold water (50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **2a-c**, identical with the same products obtained above. Yields are shown in **Table I**.

	S M	Reagen t	Produ	Physical grinding			Green solvent			Microwave		
							irradiation					
S.N									_			
0.							<u>PEG-600</u>					
				Tim	Tem	Yield	Tim	Tem	Yield	Tim	Tem	Yield
				e	р	*	e	р	*	e	р	*
				(Mi	р (⁰ С	(%)	(Mi	р (⁰ С)	(%)	(Mi	р (⁰ С)	(%)
				n))		n)			n)		
		DMS	2a	10-	RT	84	180	100	70	2	RT /	86
				15							450	
											W	
1.	1	DES	2b	10-	RT	87	180	100	73	2	RT /	84
				15							450	
											W	
		PhCH ₂	2c	10-	RT	80	180	100	64	2	RT /	74
		Cl		15							450	
											W	

 Table -I

 Preparation of 2 from 1 under different green conditions

*Yield refers to isolated crude product only. M.P. of **2a:** 232- 35^oC (Lit.^(XI) m.p. 235-38^oC) M.P. of **2b:** 248-54^oC (Lit.^(XI) m.p. 250-52^oC) M.P. of **2c:** 185- 87^oC (Lit.^(XI) m.p. 187-89^oC)

CONCLUSION

In conclusion, the use of solvents like DMF / CH_3CN for N-alkylation are not green and hence we have developed a green approach for the synthesis of N-alkyl-2-aminobenzimidazoles under different conditions.

ACKNOWLEDGEMENT

The author is highly indebted to University Grants Commission (UGC), New Delhi for sanctioned Minor Research Project and also thankful to Principal, Vidya Jyothi Institute of Technology (Autonomous), Hyderabad.

References

I. (a) G L Gravatt, B C Baugley, W R Wilson W.A.Denny, J Med Chem, 37, 4338 (1994), (b) L S Kim D Cotto and L E Lin Fun L Mod Cham 20, 002 (100(); (c) T

(b) J. S. Kim, B. Gatto and L. F. Liu, *Eur J Med Chem*, 39, 992 (1996); (c) T Roth, M L Morningstr, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, *J Med Chem*, 40, 4199 (1997); (d) D A Horton, G T Bourne and M L Smythe, *Chem Rev*, 893 (2003).

- II. (a) G L Gravatt, B C Baugley, W R Wilson and Denny W A, J Med Chem, 37, 4338 (1994); b) B Jayasankara and K M L Rai, Arkivoc 75 (2008); (c) T Roth, M L Morningstar, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, J Med Chem, 40, 4199 (1997).
- III. H Hasegawa, N Tsuda and M Hasoya, *Japanese Pat*, 198 (1974); *Chem Abstr*, (1975), 156308.
- IV. G Rovnyak, V L Narayana, R D Haugwitz and C M Cimarusti, US Pat, 014, (1973); Chem Abstr, 1974, 105596.
- V. S C Bell and P H Wei, J Med Chem, 19, 524 (1976).
- VI. D R Graber, R A Morge and Raenko, J Org Chem, 52, 4620 (1987).
- VII. N I Korotkikh, G F Raenko and O P Shavaika, *Chem Heterocycl compd*, 31, 359 (1995).
- VIII. V Andre, A Hardeman, I Halasz, RS Stein, GJ Jackson and DG Reid, Angew. Chem. Int.Ed, 50, 7858 (2011).
- IX. M B J Atkinson, D K Bucar, A N Sokolv, T Friescie, C N Robinson, M Y Bilai, *Chem.Commun*, 14, 10570 (2008).
- X. P K Dubey, A Naidu, V Anandam, Indian J. Chem, 44, 417 (2005).
- XI. T Anelia, P D Mavrova, A Yordan, K Tsenov, *Bioorganic & Medicinal Chemistry*, 15, 6291(2007).

Received on March 20, 2016.